Parkway Pantai and UCARE.AI unveils AI-powered predictive hospital bill estimation system | Healthcare Asia Magazine
, Singapore

Parkway Pantai and UCARE.AI unveils AI-powered predictive hospital bill estimation system

It provides an 82% accuracy rate in estimating hospital bills.

Private healthcare provider Parkway Pantai and artificial intelligence (AI) healthcare startup UCARE.AI launched its AI-powered predictive hospital bill estimation system at the Mount Elizabeth, Mount Elizabeth Novena, Gleneagles and Parkway East hospitals, an announcement revealed.

The system will dynamically generate personalised and more accurate bill estimates based on relevant parameters such as a patient’s medical condition and medical practices, as well as taking into account their age, revisit frequency and existing co-morbidities including high blood pressure and diabetes.

According to the firms, the system analyses and uses the relevant information specific to the individual patient to automatically predict the patient’s bill size at different touchpoints, starting from pre-admission until eventual recovery. Using an advanced suite of AI and machine learning algorithms, the system provides an average 82% accuracy rate in estimating bills.

“Our investment in this new AI-powered system gives patients more accurate hospital bill estimates and empowers them to make more well-informed decisions on the medical treatment options available,” Phua Tien Beng, Parkway Pantai CEO for the Singapore operations division, said in a statement. “More importantly, it allows patients to have greater peace of mind over their healthcare expenditure so that they can focus on getting well.”

Also read: Singapore's Ministry of Health sets fee benchmarks for surgical procedures

The new estimation system has been in use since November and has made more than 10,000 predictions so far, the firms revealed in a joint statement.

“In its first two weeks of going live, the AI system has already closed the average gap between the estimated and actual bills by 60%,” they highlighted. “The accuracy of its predictions is expected to improve over time as the AI collects and references more data through a process of self-learning.”

Conventional billing estimation methods are based on statistical calculation of previous hospital bill sizes up to two years ago and are unable to account for dynamically changing factors such as disease aggravation and unexpected complications such as longer length of stay or unplanned additional surgeries.

“We seek to ride the wave of healthcare disruption and roll out more AI systems and services to benefit patients globally,” UCARE.AI founder and CTO Neal Liu added in a statement.

Pemindaian AI terkini meningkatkan diagnosa di Shin Kong Wu Ho-Su Memorial Hospital

Rumah sakit di Taiwan ini menggunakan teknologi endoskop yang dibantu AI untuk mendeteksi polip dan kamera resolusi tinggi untuk telemedis.

KFSHRC Saudi bertumpu pada inovasi untuk mentransformasi layanan kesehatan

Rumah sakit ini mempercepat adopsi teknologi baru untuk memposisikan dirinya sebagai pemimpin global di bidang kedokteran.

Angkor Hospital merencanakan pusat trauma untuk anak-anak

Fasilitas ini akan memiliki ICU, ruang gawat darurat, ruang operasi, dan bangsal bedah.

Bali International Hospital dan HK Asia Medical mendirikan pusat jantung baru

Fasilitas ini akan menawarkan diagnostik, operasi invasif minimal, dan perawatan pasca operasi.

Pasar pencitraan medis Indonesia diproyeksikan tumbuh 6,12% CAGR hingga 2030

Salah satu pendorong utama adalah peningkatan inisiatif yang dipimpin pemerintah.

Rumah Sakit Pusat Kamboja beralih ke adopsi teknologi untuk meningkatkan layanan jantung

Salah satu teknologi kunci mereka adalah mesin ECMO untuk mendukung hidup yang berkepanjangan dalam kondisi kritis.

Ekspor farmasi Indonesia diperkirakan tumbuh 7,7% CAGR hingga 2028

Berkat upaya pemerintah dan aturan investasi baru untuk meningkatkan produksi domestik.

Jepang dan Indonesia tandatangani MoU untuk pelatihan perawat dan pekerja perawatan

Kemitraan ini bertujuan membimbing tenaga kesehatan Indonesia agar memenuhi standar tenaga kerja profesional Jepang.

Pusat gigi nasional Singapura berada di garda terdepan layanan gigi digital

Teknologi pemindaian intraoralnya menggantikan metode pencetakan gigi tradisional.

Inovasi medis global dan solusi berbasis AI menjadi sorotan

Medical Taiwan 2024 menghadirkan 280 peserta dari 10 negara dan mendorong integrasi teknologi dalam layanan kesehatan.